

Temario

Unidad 1: Descarga e Instalación del SDK, IDE y configuración de los mismos.

- Clase 1: Descarga del software necesario e instalación del mismo.
- Clase 2: Instalación y configuración del entorno de desarrollo. Pruebas de funcionamiento.

Unidad 2: Introducción

 Clase 3: ¿Qué es un microcontrolador? Concepto básico, comparación con microprocesadores, aplicaciones típicas. Características de RISC. Algunas ventajas de RISC. Desventajas de RISC. Arquitectura ARM: Características principales, comparación con otras arquitecturas, ventajas y desventajas. Raspberry Pi Pico: Características principales, comparación con otras placas, ventajas y desventajas.

Unidad 3: Hardware de la Raspberry Pi Pico

• Clase 4: Microcontrolador RP2040: Arquitectura, núcleo dual ARM Cortex-M0+, memoria RAM y flash. GPIOs: Puertos de entrada/salida general.

Unidad 4: Introducción al Lenguaje C de Raspberry pi

- Clase 5: Variables y tipos de datos: Enteros, flotantes, caracteres, booleanos.
 - Operadores: Aritméticos, lógicos, relacionales.
 - Estructuras de control: Condicionales (if, else), bucles (for, while).
 - Funciones: Definición, llamada, paso de parámetros.

Unidad 5: Displays de 7 segmentos

- Clase 6: Funcionamiento de un Display de 7 Segmentos
 - Estructura Básica
 - Aplicaciones
 - Ventajas
 - Desventajas
 - Resumen
- Clase 7: Practica: Manejo de 1 display de 7 segmentos
 - Hardware Necesario
 - Conexión del Display
 - Código en C
 - Explicación del Código
 - Lógica para Encender los Segmentos

- Consideraciones Adicionales (Multiplexación, Velocidad, Brillo, Librerías existentes)
- Clase 8: Practica: Manejo de 2 o mas display de 7 segmentos (Multiplexación)
 - Hardware Necesario
 - Conexión del Display
 - Código en C
 - Explicación del Código
 - Lógica para Encender los Segmentos
 - Consideraciones Adicionales (Multiplexación, Velocidad, Brillo, Librerías existentes)

Unidad 6: Manejo de teclado matricial 4x4

- Clase 9: Introducción
 - Estructura y funcionamiento de un teclado matricial
 - Resistencias pull-up
 - Aplicaciones
 - Ventajas
 - Desventajas
 - Resumen
- Clase 10: Practica: Manejo de teclado matricial 4x4
 - Hardware Necesario
 - Conexión del teclado
 - Código en C
 - Explicación del Código

Unidad 7: Pantalla LCD HD44780 en conexión paralelo

- Clase 11: Introducción, cómo funciona la LCD con controlador HD44780
 - Estructura y funcionamiento
 - Aplicaciones
 - Ventajas
 - Desventajas
 - Resumen
- Clase 12: Practica: Manejo de LCD 16X2 conexión paralelo
 - Hardware Necesario
 - Conexión de la lcd
 - Código en C
 - Explicación del Código

Unidad 8: Protocolo 1-Wire

- Clase 13: ¿Qué es 1-Wire?
 - Funcionamiento Básico
 - Parámetros de Configuración
 - Comparación con Otros Protocolos Seriales
 - Aplicaciones Típicas
 - Practica: Lectura del Sensor digital de temperatura DS18B20
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código

Unidad 9: DHT22 (sensor de temperatura y humedad)

- Clase 14: ¿Qué es DHT22?
 - Funcionamiento Básico
 - Parámetros de Configuración
 - Aplicaciones Típicas
 - Resumen
 - Practica: Lectura del Sensor de Temperatura y Humedad DHT22
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código

Unidad 10: Periférico Serial UART

- Clase 15: ¿Qué es USART?
 - Funcionamiento Básico
 - Parámetros de Configuración
 - Comparación con Otros Protocolos Seriales
 - Aplicaciones Típicas
 - Resumen
 - Práctica: Manejo de USART
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código

Unidad 11: Periférico Serial SPI

- Clase 16: ¿Qué es SPI?
 - Características Principales
 - Funcionamiento Básico
 - Funcionamiento como maestro y esclavo
 - Ventajas del Protocolo SPI
 - Desventajas del Protocolo SPI
 - Aplicaciones Típicas
 - Resumen
- Clase 17: Practica: Manejo del Sensor Presion Atmosferica Bmp280 Protocolo SPI (3 y 4 hilos)
 - Características Principales del Bmp280
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código
 - Práctica: Comunicación de 2 Microcontroladores por SPI
 - Hardware Necesario
 - Conexión
 - Código en C del Maestro (Master)
 - Código en C del Esclavo (Slave)
 - Explicación de ambos Códigos

Unidad 12: Periférico Serial I2C

- Clase 18: ¿Qué es I2C?
 - Características Principales
 - Funcionamiento Básico
 - Ventajas del Protocolo I2C
 - Desventajas del Protocolo I2C
 - Aplicaciones Típicas
 - Comparación con SPI
 - Resumen
- Clase 19: Practica: Manejo de Pantalla LCD por I2C a través del módulo de expansión de pines I2C PCF8574
 - Características Principales del PCF8574
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código
 - Practica: Manejo del Sensor Presion Atmosferica Bmp280 Protocolo I2C

- Hardware Necesario
- Conexión
- Código en C
- Explicación del Código

Unidad 13: Conversor Analógico/Digital (ADC)

- Clase 20: ¿Qué es un Conversor ADC?
 - El ADC en la Raspberry Pi Pico
 - Configuración del ADC en la Raspberry Pi Pico
 - Conceptos Básicos
 - ADC (Analog to Digital Converter):
 - Resolución:
 - Muestreo:
 - Cuantización:
 - Aplicaciones Típicas
 - Resumen
 - Práctica: Lectura de voltaje de un potenciómetro a través del ADC
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código

Unidad 14: Temporización y Tareas en Tiempo Real

- Clase 21: Timers:
 - Watchdog:
 - Tareas en tiempo real:
 - Practica: Contador con timer
 - Hardware Necesario
 - Conexión
 - Código en C
 - Explicación del Código

Unidad 15: Interrupciones

- Clase 22: Concepto de interrupción:
 - Vector de interrupciones:
 - Practica: Teclado 4x4 por interrupciones
 - Hardware Necesario

- Conexión
- Código en C
- Explicación del Código

Unidad 16: Memoria y Punteros

- Clase 23: Memoria RAM y flash: Diferencias, acceso y uso.
 - Punteros: Concepto, aritmética de punteros, uso seguro.
 - Ejemplos: Manejo de arrays, paso de parámetros por referencia, estructuras de datos dinámicas.

Unidad 17: Breve repaso y cierre

Clase 24: Repaso de los conceptos aprendidos y cierre del curso.

Bibliografía obligatoria

Datasheet RP2040: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico Datasheet: https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

Raspberry Pi Pico C/C++ SDK: https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

Getting started with Raspberry Pi Pico-series:

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Introduction to the ARM Serial Wire Debug (SWD) protocol: https://documentation-service.arm.com/static/622222b2e6f58973271ebc21